f08 — Least-squares and Eigenvalue Problems (LAPACK) f08wijc

NAG C Library Function Document
nag dggbak (f08wjc)

1 Purpose

nag_dggbak (f08wjc) forms the right or left eigenvectors of the real generalized eigenvalue problem
Ax = \Bz, by backward transformation on the computed eigenvectors given by nag_dtgevce (f08ykc). It
is necessary to call this function only if the optional balancing function nag dggbal (f08whc) was
previously called to balance the matrix pair (A, B).

2 Specification

void nag_dggbak (Nag_OrderType order, Nag_JobType job, Nag_SideType side, Integer n,
Integer ilo, Integer ihi, const double Iscale[], const double rscale[], Integer m,
double v[], Integer pdv, NagError *fail)

3 Description

If the matrix pair has been previously balanced using function nag dggbal (f08whc) then nag dggbak
(f08wjc) backtransforms the eigenvector solution given by nag_dtgevc (f08ykc). This is usually the sixth
and last step in the solution of the generalized eigenvalue problem.

For a description of balancing, see the document for nag_dggbal (f08whc).

4 References
Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141-152

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

2: job — Nag JobType Input

On entry: specifies the backward transformation step required:

if job = Nag_DoNothing, no transformations are done;

if job = Nag_Permute, only do backward transformations based on permutations;

if job = Nag_Scale, only do backward transformations based on scaling;

if job = Nag_DoBoth, do backward transformations for both permutations and scaling.
Note: this must be the same parameter job as supplied to nag_dggbal (f08whc).
Constraint: job = Nag_DoNothing, Nag_Permute, Nag_Scale or Nag_DoBoth.

3: side — Nag_SideType Input

On entry: indicates whether left or right eigenvectors are to be transformed, as follows:

[NP3645/7] f08wjc. 1

f08wjc NAG C Library Manual

if side = Nag_LeftSide, left eigenvectors are transformed;
if side = Nag_RightSide, right eigenvectors are transformed.

Constraint. side = Nag_LeftSide or Nag_RightSide.

4: n — Integer Input
On entry: n, the order of the matrices A and B of the generalized eigenvalue problem.
Constraint: n > 0.

5: ilo — Integer Input

6: ihi — Integer Input
On entry: 1, and i); as determined by a previous call to nag_dggbal (fO8whc).

Constraints:
ifn>0, 1 <ilo <ihi<n;
if n =0, ilo = 1 and ihi = 0.

7: Iscale[dim| — const double Input
Note: the dimension, dim, of the array Iscale must be at least max(1,n).

On entry: details of the permutations and scaling factors applied to the left side of the matrices A
and B, as returned by a previous call to nag_dggbal (fO8whc).

8: rscale[dim] — const double Input
Note: the dimension, dim, of the array rscale must be at least max(1,n).

On entry: details of the permutations and scaling factors applied to the right side of the matrices A
and B, as returned by a previous call to nag_dggbal (fO8whc).

9: m — Integer Input
On entry: m, the required number of left or right eigenvectors.

Constraint: 0 <m < n.

10: v[dim] — double Input/Output

Note: the dimension, dim, of the array v must be at least max(1l,pdv x m) when
order = Nag_ColMajor and at least max(1, pdv x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix V is stored in v[(j — 1) x pdv + ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix V is stored in v[(i — 1) x pdv + j — 1].

On entry: the matrix of right or left eigenvectors, as returned by nag_dggbal (f08whc).

On exit: the transformed right or left eigenvectors.

11: pdv — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array v.
Constraints:

if order = Nag_ColMajor, pdv > max(1,n);
if order = Nag RowMajor, pdv > max(1, m).

12: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

f08wjc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pdv = (value).
Constraint: pdv > 0.
NE_INT 2

On entry, m = (value), n = (value).
Constraint: 0 < m < n.

On entry, pdv = (value), n = (value).
Constraint: pdv > max(1,n).

On entry, pdv = (value), m = (value).
Constraint: pdv > max(1, m).

NE_INT 3

On entry, n = (value), ilo = (value), ihi = (value).

Constraint: if n > 0, 1 <ilo < ihi < n;
if n =0, ilo = 1 and ihi = 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

fO8wijc

An internal error has occurred in this function. Check the function call and any array sizes. If the

call is correct then please consult NAG for assistance.

7 Accuracy

The errors are negligible, compared with the previous computations.

8 Further Comments

The number of operations is proportional to n’.

The complex analogue of this function is nag_zggbak (f08wwc).

9 Example

See Section 9 of the documents for nag_dhgeqz (f08xec) and nag_dtgevc (f08ykc).

[NP3645/7]

f08wjc.3 (last)

	f08wjc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	side
	n
	ilo
	ihi
	lscale
	rscale
	m
	v
	pdv
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

